Dropout

  • 机器学习正则化方法原理与实战应用解析

    在机器学习领域,过拟合(Overfitting)是模型开发过程中常见且棘手的问题。当模型在训练数据上表现优异,却在未见过的测试数据上泛化能力不佳时,我们就说模型产生了过拟合。正则化(Regularization)正是为了解决这一问题而诞生的一系列技术,其核心思想是通过在模型的目标函数(损失函数)中引入额外的约束或惩罚项,来限制模型的复杂度,从而提升其泛化能力…

    2025年11月24日
    60
联系我们
关注微信
关注微信
分享本页
返回顶部